Article Text

other Versions

Download PDFPDF
Spatial-domain low-coherence quantitative phase microscopy to improve the cytological diagnosis of pancreatic cancer
  1. Hongbin Ma1,2,3,
  2. Pin Wang2,
  3. Dong Shang1,
  4. Yang Liu2
  1. 1 General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
  2. 2 Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
  3. 3 Dalian Jinzhou First People’s Hospital, Dalian, Liaoning, China
  1. Correspondence to Prof. Dong Shang, General Surgery The First Affiliated Hospital of Dalian Medical University Dalian China ; shangdong{at}


Use of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) cytology to detect pancreatic cancer is limited, with a high false negative rate mainly due to the relatively fewer number of completely cancerous cells. To improve the accuracy of EUS-FNA cytological diagnosis, we evaluated a novel optical system—spatial-domain low-coherence quantitative phase microscopy (SL-QPM)—to analyze nanoscale nuclear architecture on original cytology samples, especially those diagnosed as indeterminate for malignancy, with the goal of maintaining high specificity and reducing false positive rate. We performed SL-QPM on original cytology samples obtained by EUS-FNA from 40 patients with suspicious pancreatic solid lesions (27 adenocarcinomas, 5 neuroendocrine tumor, 8 chronic pancreatitis), including 13 cases that were cytologically indeterminate. Each diagnosis had been confirmed by follow-up surgical pathology. The SL-QPM-derived nanoscale nuclear architectural parameters distinguished pancreatic cancer from cytologically indeterminate cells. A logistic regression model using nuclear entropy and SD increased the sensitivity of cytology in identifying pancreatic cancer from 72% to 94% while maintaining 100% specificity. The SL-QPM-derived nanoscale nuclear architecture properties show great promise in improving the cytological diagnosis of EUS-FNA for pancreatic cancer and could be used when traditional cytopathology does not get an accurate diagnosis, and can be easily translated into a traditional clinical device.

  • pancreatic carcinoma
  • pancreatitis
  • biopsy

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • Contributors HM and PW performed the experiments and analyzed the data. HM wrote the draft. DS and YL revised the article and supported the study. DS and YL jointly designed, oversaw, and directed the study.

  • Funding This work was financially supported by grants from the National Natural Science Foundation of China (no 81373875).

  • Competing interests The authors declare that a US patent was issued to spatial-domain low-coherence quantitative phase microscopy (SL-QPM) (US Patent 10,156,479), which could be construed as a potential conflict of interest.

  • Ethics approval All studies were performed with the approval of the institutional review board at the University of Pittsburgh.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Patient consent for publication Not required.