Article Text

Download PDFPDF
Inducible Nitric Oxide Synthase Inhibitor SD-3651 Reduces Proteinuria in MRL/lpr Mice Deficient in the NOS2 Gene

Abstract

Several studies have demonstrated the effectiveness of arginine analog nitric oxide synthase (NOS) inhibitor therapy in preventing and treating murine lupus nephritis. However, MRL/MpJ-FASlpr (MRL/lpr) mice lacking afunctional NOS2 (inducible NOS [iNOS]) gene (NOS2−/−) develop proliferative glomerulonephritis in a fashion similar to their wild-type (wt) littermates. This finding suggests that the effect of arginine analog NOS inhibitors is through a non-iNOS-mediated mechanism. This study was designed to address this hypothesis.

NOS2−/− mice were given either vehicle or a NOS inhibitor (SD-3651) to determine if pharmacological NOS inhibition prevented glomerulonephritis, using wt mice as positive controls. Urine was collected fortnightly to measure albumin. At the time of full disease expression in wt mice, all mice were killed, and renal tissue was examined for light, immunofluorescence, and electron microscopic evidence of disease. Serum was analyzed for anti-double-stranded DNA antibody production.

NOS2−/− mice had higher serum anti-double-stranded DNA antibody antibody levels than those of wt mice. SD-3651 therapy reduced proteinuria, glomerular immunoglobulin G deposition, and electron microscopic evidence of podocytopathy and endothelial cell swelling without affecting proliferative lesions by light microscopy.

These studies confirm that genetic iNOS deficiency alone is insufficient to prevent proliferative glomerulonephritis and suggest that iNOS activity may inhibit autoantibody production. These results also suggest that SD-3651 therapy acts via a non-iNOS-mediated mechanism to prevent endothelial cell and podocyte pathology. Studies that elucidate this mechanism could provide a useful drug target for the treatment of nephritis.

Key Words
  • lupus nephritis
  • nitric oxide
  • animal models
  • nitric oxide synthase
  • enzyme inhibitors

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.